Department of ELECTRONICS AND COMMUNICATION

ENGINEERING

4 Years B.Tech Degree Programme

REGULATION & SYLLABUS 2017

Choice Based Credit System Outcome Based Assessment

SEMESTER-III& IV

AUTONOMOUS

Accredited by NBA

Accredited by NAAC with 'A' Grade (3.28 out of 4.00 CGPA) GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY

Affiliated to UGC New Delhi & Biju Patnaik University of Technology, Odisha

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1:** Graduates of the program will have a successful career of mechanical engineering by imparting Mechanical Engineering concepts and practical knowledge.
- **PEO2:** Graduates of the program will pursue higher education and research in the field of mechanical engineering.
- **PEO3:** Graduates of the program will exhibit Scientific and Engineering expertise and perform as a Professional Entrepreneur.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- **PSO 1:** Ability to apply the acquired Mechanical Engineering knowledge for the development of composite materials for societal application.
- **PSO 2:** Ability to implement the learned principles of Mechanical Engineering to analyze, evaluate and create more advanced mechanical systems by using state-of-art facilities.

PROGRAMME OUTCOMES (POs)

- PO-1. Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- PO-2. Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO-3. Design / Development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

- PO- 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO-8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO- 9. Individual and team work: Function effectively as an individual and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO-10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO-11. Project management and finance: Demonstrate knowledge and understanding of the engineering management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO-12. Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

III SEMESTER [SECOND YEAR]

SI. No.	Course Category	Course Title	L	т	Ρ	С	QP	
			THEORY					
1	PC	BECPC3010	Analog Electronic Circuits	3	1	0	4	А
2	PC	BELPC3020	Network Theory	3	0	0	3	А
3	PC	BEIPC3030	Electrical and Electronic Measurements	3	0	0	3	А
4	BS	BBSBS3040	Engineering Mathematics-III	3	1	0	4	А
5	ES	BCSES3050	Object Oriented Programming through JAVA	3	0	0	3	А
6		BBSBS3061	Environmental Engineering and Safety	2	0	0	2	^
0	DO / NO	BMSHS3062	Engineering Economics and Costing	3	0	0	3	A
		PRA	CTICAL / SESSIONAL					
7	PC	BECPC3110	Analog Electronic Circuits Laboratory	0	0	2	1	-
8	PC	BELPC3120	Network and Devices Laboratory	0	0	2	1	-
9	PC	BEIPC3130	Electrical and Electronic Measurements Laboratory	0	0	2	1	-
10	ES	BCSES3150	JAVA Programming Laboratory	0	0	2	1	-
		ΤΟΤΑ	L	18	2	8	24	

IV SEMESTER [SECOND YEAR]

SI. No.	Course Category	Course Code	Course Title	L	т	Ρ	С	QP
			THEORY					
1	PC	BECPC4010	Digital Electronics	3	1	0	4	А
2	PC	BEEPC4020	Control Systems	3	0	0	3	А
3	PC	3	0	0	3	А		
4	PC	BECPC4040	Semiconductor Devices	3	1	0	4	А
5	ES	BCSES4050	Database Management Systems	3	0	0	3	А
6		BBSBS3061	Environmental Engineering and Safety	2	0	0	1	^
0	007110	BMSHS3062	Engineering Economics and Costing	3	0	0	4	
		PRA	CTICAL / SESSIONAL					
7	PC	BECPC4110	Digital Electronics Laboratory	0	0	2	1	-
8	PC	BEEPC4120	Control Systems Laboratory	0	0	2	1	-
9	PC	BECPC4130	Microprocessors and Microcontrollers Laboratory	0	0	2	1	-
10	ES	BCSES4150	Database Management Systems Laboratory	0	0	2	1	-
		ΤΟΤΑ	L	18	2	8	24	

Analog Electronics Circuits						
Subject Code	L	Т	Ρ	С	QP	
BECPC3010	3	1	0	4	Α	

Pre -Requisite: A student should have basic idea on electronic components and also should have clear concept on KCL & KVL.

Course Educational Objective

CEO1: Prepare the students to perform the analysis of analog electronic circuits.

CEO2: Empower the students to understand the design and working of different types of amplifiers.

Course Outcome

At the end of this course students will be able to demonstrate the ability to

- **CO1** Understand the characteristics of transistors.
- **CO2** Design and analyze various amplifier circuits.
- **CO3** Describe the effect of negative feedback, low & high frequency response and gainbandwidth relationship for amplifier scheme.
- **CO4** Understand the functioning of OP-AMP and design OP-AMP based circuits.
- **CO5** Use the effect of positive feedback to model oscillators.
- **CO6** Examine the efficiency of different class of power amplifiers.

UNIT:1

(12 Hours)

Biasing of BJTs: Introduction; Operating Point; Fixed Bias; Emitter Bias; Voltage-Divider Bias; DC Bias with Voltage Feedback; Miscellaneous Bias Configurations; Design Operations; Bias Stabilization. (4 Hours)

Field-Effect Transistors: Introduction; Basic Construction, Operation and Characteristics of JFETs and MOSFETs; CMOS. (4 Hours)

Biasing of FETs: Fixed-Bias Configuration; Self-Bias Configuration; Voltage-Divider Biasing; Design. (4 Hours)

UNIT:2

Small Signal Analysis of BJTs: BJT Transistor Modeling; The r_e Transistor model; The Hybrid Equivalent Model: Small-Signal Analysis of CE, CB, and CC Amplifiers; Emitter Follower Configuration; Effect of R_L and R_S ; Two-Port Systems Approach; Cascaded Systems; Darlington Connection; Current Mirror Circuits. (6 Hours)

Small Signal Analysis of FETs: FET Small-Signal Model, Small-Signal Analysis of CS, CD, CG Amplifiers. Effect of R_L and R_{sig} ; Cascade Configuration. (6 Hours)

UNIT:3

Frequency Response of BJTs and FETs: Low and High Frequency Response of BJTs and FETs; Frequency Response of CE Amplifier; Frequency Response of CS Amplifier; Miller Effect Capacitance; Multistage Frequency Effects; Square Wave Testing.

(5 Hours)

UNIT:4

Operational Amplifiers: Differential Amplifier Circuit; Op-Amp Basics; Practical Op-Amp Circuits; Op-Amp Parameters; Op-Amp Parameters; Op-Amp Applications; Instrumentation Amplifier; Active Filters. (5Hours)

Power Amplifiers: Classifications; Class-A and Class-B Amplifier Circuits, Transfer Characteristics, Power Dissipation and Conversion Efficiency of Power Amplifiers.

(3 Hours)

Feedback Amplifiers and Oscillators: Feedback Concepts; Feedback Connection Types; Practical Feedback Circuits; Feedback Amplifier Stability using Nyquist Plot; Basic Principle of Sinusoidal Oscillator; Phase-Shift, Wien-Bridge and Crystal Oscillator.

(4 Hours)

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books

Electronic Devices and Circuit Theory, R. L. Boylestad and L. Nashelsky, Pearson Education, New Delhi, 9th/10th Edition, 2013. (Selected portions of Chapter 4, 5, 6, 7, 8, 9, 10, 11, 12, and 14)

Milliman's Electronics Devices and Circuits, J. Milliman, C. Halkias, S. Jit., Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2nd Edition, 2008.

Microelectronics Circuits, 5th Edition, International Student Edition Sedra and Smith, Oxford University Press, New Delhi.

(12 Hours)

(5 Hours)

(12 Hours)

Ref.

1. Electronic Devices and Circuits, 3rd Edition, Jimmie J. Cathey adapted by Ajay Kumar Singh, Tata McGraw Hill Publishing Company Ltd., New Delhi.

Books

2. Electronics Circuits Analysis and Design, 3rd Edition, Donald A. Neamen, Tata McGraw Hill Publishing Company Ltd., New Delhi.

3. Microelectronic Circuits: Analysis and Design, India Edition, M.H. Rashid, PWS Publishing Company, a division of Thomson Learning Inc.

CO - PO	Matrix of	CourseAnalog	Electronics	Circuits
---------	-----------	--------------	-------------	----------

со	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
C1	3	3	1	1	-	-	-	-	-	2	-	1	-	-	-
C2	3	2	1	1	-	-	-	-	-	2	-	-	-	-	-
C3	3	3	3	2	-	-	-	-	-	3	-	-	-	-	-
C4	3	3	3	3	1	-	-	-	-	2	-	1	1	1	1
C5	3	3	3	3	1	1	-	-	-	2	-	2	-	-	-
C6	3	3	3	2	1	1	-	-	-	2	-	2	1	1	-
Avera ge	3	2.8 3	2.3 3	2	1	1	0	0	0	2.1 6	0	1.5	1	1	1

Electrica	al and Electronics Measurement					
Subject (Code	L	Т	Ρ	С	QP
PEI3I102	2	3	0	2	4	
Pre -Req	juisite:					
Course E	Educational Objective					
CEO1:To	o impart students the skill of technically employing differe	nt type	es of	metei	ſ.	
CEO2: T	o prepare students for monitoring, analyzing and calibrat	ing an	iy phy	vsical	systei	m.
CEO3:To and elect	o provide students knowledge of practicing modern tools tronics projects.	for in	nplem	entin	g elec	trical
Course	Outcome					
At the en	d of the course, students will be able to:					
CO1	Define the measurement of electrical phenomena like F the behavior of electrical and electronic circuits.	R, L &	C wł	ich c	haract	erize
CO2	Estimate various properties of measurands in measurer	ment s	syster	n.		
CO3	Operate numerous measurement systems to instrumentation engineering.	meet	de	sire	need	s in
CO4	Examine and conduct experiments to evaluate , power,	Powe	er fact	or, er	nergy	
CO5	Assemble different components and design various typ	es of	ac &	dc bri	idges.	
CO6	Estimate and justify the validity of all kind of laborator measurement.	y instr	umer	nts in	the fie	eld of
UNIT:1(1	11 Hrs)					
INTROD	UCTION: Measurement, Static characteristics - Accuracy	, Prec	ision,	Sign	ificant	
Figures, Standarc	Resolution, sensitivity, linearity and error, Types o ls, IEEE Standards.	f Erro	ors. (Class	ificatio	on of
MEASUF Bridge, N substituti method, Resistan	REMENT OF RESISTANCE: Measurement of Low Res Measurement of Medium Resistance by Wheatstone brid ion method, Measurement of High Resistance by los Measurement of Insulation Resistance when Power ce of Earth Connections.	istanc ge, ar ss of is C	e by nmet char N, N	Kelvi er-vol ge ar /leasu	n's Do Itmete nd Me ureme	ouble r and egger nt of

MEASUREMENT OF INDUCTANCE: Measurement of Self Inductance by Ammeter and

Voltmeter method and AC Bridges(Maxwell's, Hay's, & Anderson Bridge), Measurement of Mutual Inductance by Felici's Method, and as Self Inductance.

MEASUREMENT OF CAPACITANCE: Measurement of Capacitance by Ammeter and Voltmeter and AC Bridges (Owens's, Schering), Wein's bridge, Screening of Bridge Components and Wagner Earthing Device.

UNIT:2

(15 Hours)

GALVANOMETER: Construction, Theory, Principle of operation and constants of D'Arsonval galvanometer, Influence of Resistance on Damping, Logarithmic decrement Construction, Theory and Principle of operation of Vibrational galvanometer, Construction, theory, Principle of operation and calibration of Ballistic Galvanometer, Measurement of Flux.

AMMETER and VOLTMETER: Construction, Theory, Principle of operation of PMMC, MI (attraction and repulsion types), Electro Dynamometer.

POTENTIOMETER: Construction, Theory and Principle of operation of DC Potentiometer (Crompton), Construction, Theory and Principle of operation of AC Potentiometer (Drysdale-Tinsley)

UNIT:3

MEASUREMENT OF POWER: Measurement of single phase and three phase power by wattmeter, Construction, Theory and Principle of operation of Electro-Dynamometer and Induction type Watt meters.

MEASUREMENT OF ENERGY: Single Phase Watt-hour meter.

MEASUREMENT OF FREQUENCY: Electrical resonance and ratio meter type frequency meter.

MEASUREMENT OF POWER FACTOR: Single Phase power factor meter.

UNIT:4

CURRENT TRANSFPRMER and POTENTIAL TRANSFOMER: Construction, Theory, Characteristics of CT, PT, Q-meter.

COUNTERS & ANALYZERS: Introduction to Wave, Harmonic Distortion and Spectrum Analyzers, Frequency Counters, Testing an Audio Amplifier.

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books:

(6 Hours)

(8 Hours)

Electrical Measurements and Measuring Instruments – Golding & Widdis – 5th Edition, Reem Publication.

Modern Electronic Instrumentation and Measurement Techniques – Helfrick& Cooper – Pearson.

Reference Books:

A Course in Electrical and Electronic Measurements and Instrumentation – A K Sawhney – Dhanpat Rai & Co.

Electronic Instrumentation – H C Kalsi – 2nd Edition, Tata McGraw Hill.

СО	РО 1	PO 2	РО 3	РО 4	РО 5	РО 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
C1	3	2	1	1	-	1	2	2	-	2	2	3	2	1	1
C2	2	2	1	3	2	1	-	1	-	2	2	2	2	1	-
C3	3	-	1	-	2	1	2	1	3	2	1	3	1	2	2
C4	3	3	2	3	1	2	1	-	3	3	1	2	-	3	1
C5	1	2	3	2	2	3	1	1	3	2	1	-	2	3	1
C 6	1	2	-	1	1	2	2	1	2	3	2	2	1	1	-
Avera ge	2.1 6	2.2	1.6	2	1.6	1.6 6	1.6	1.2	2.7 5	2.3 3	1.5	2.4	1.6	1.83	1.25

CO - PO Matrix of CourseElectrical and Electronics Measurement

ENGINEERING MATHEMATICS-III

BBSBS3050 Course Educational Objective

Course Outcomes

Subject Code

Pre-Requisites (If any) -

CO1 To execute the technique of series for solving ordinary differential equation.

- **CO2** To Evaluate a contour integral using Cauchy's integral formula and to Compute singularities and also the residues.
- **CO3** To apply numerical methods in Engineering Mathematical Problems.

Unit:1 SPECIAL FUNCTIONS :

Beta and Gamma functions, relation between Beta and Gamma functions, Error function, Series solution of differential equations (up to second order), Legendre equation, Legendre polynomials and their properties, Bessel's function.

Unit:2 Complex Analysis:

Analytic function, Cauchy-Riemann equations, Laplace equation, Complex integration: Line integral in the complex plane, Cauchy's integral theorem, Cauchy's integral formula, Derivatives of analytic functions

Unit:3

Taylor's series, Laurent's series, Singularities and zeros, Residue integration, evaluation of real integrals.

Unit:4 Numerical methods:(14 Hours)

Approximation and round of errors, Roots of equation: fixed point iteration, the Newton-Raphson method. Interpolation: Lagrange Interpolation,Newton divided difference interpolation, Newton's forward and backward interpolation. Numerical Differentiation, Numerical integration: The trapezoidal rule, The Simpson's rules, Ordinary differential equation: Euler's method, modified Euler's method.

Teaching Method(s): Chalk & Board/ PPT/Video Lectures/ MOOC/ Internship/Industry Guest Lecture/ Invited Guest lecture/ Demonstration. etc.

Text Books

E. Kreyszig," Advanced Engineering Mathematics:, Eighth Edition, Wiley India

(12 hours)

(12 hours)

(12 hours)

L T P C QP

Numerical method for Engineers by M. K. Jain and Iyenger.

Reference Books

Higher Engineering Mathematics by B S Grewal : Khanna Publishers, New Delhi.

Numerical Analysis by Dutta and Jena

COURSE OUT COMES	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	_	-	_	-	_	2	_	_	3
CO2	3	3	3	_	-	_	-	_	2	_	_	2
CO3	3	3	3	_	-	_	_	_	3	_	_	3

OOPS T	hrough JAVA					
Subject C	Code	L	т	Ρ	С	QP
BCSPC3	030	3	0	0	3	
Pre -Req	uisite:					
Course I	Educational Objective					
CEO1: T inheritan	The model of object oriented programming: abstract of ce and polymorphism	data t	ypes,	enca	ipsula	ation,
CEO2:Fu	Indamental features of an object oriented language like s, exceptions and libraries of object collections	e Java	ı: obj	ect cla	asses	and
CEO3: H logic for s in Java.	low to take the statement of a business problem and fr solving the problem; then be able to proceed to code tha	om th t logic	is de as a	termin progra	e sui am w	itable ritten
CEO4: H project us	ow to test, document and prepare a professional looking sing javadoc.	packa	ige fo	r each	n bus	iness
Course (Dutcome: At the end of the course, the student will be ca	apable	of			
CO1	Students will be able to map real world problems into the with oop features and Implement object oriented princip	the Pr les foi	ograr r reus	nming ability	lang	uage
CO2	Students will be able to write programs using basic da loops, Array.	ita typ	es ar	nd strii	ngs,	using
CO3	Student will be able to Assign priorities and resolution Multithreading and Exception Handling techniques	olve	run-tii	me e	rrors	with
CO4	Students will be able to Interpret Events handling technuser with GUI and Develop client/server applications us	niques ing so	for ii cket	nterac progra	tion o Immii	of the
UNIT:1				(*	12 Ho	ours)
An introduct Introduct Program, executing Operator Statemen	duction Object Oriented Programming, Features of Obj ion to Java. Difference between C/C++ and Java, Fe Writing the java program, Compiling the program, J g a program?, Architecture of JVM. Understanding, s, Control Structures and Arrays, Conditional Statements ints, Java Arrays, Multidimensional Arrays, Taking Input	ect O atures VM ar Java s, Loop from	riente of J nd its Toke os/ Ite keybe	d Pro lava, signi ens, [erators pard, (gram First fican Dataty , Jun Comr	Java Java ce in ypes, nping mand

Line Arguments, Using Scanner Class, Using Buffered Reader class.

UNIT:2

(14 Hours)

Introduction to Classes and Objects. Constructors, static Keyword, this Keyword, Array of Objects, Access Modifiers (Public, Private, Protected, Default). Inheritance, Types of Inheritance and Java supported Inheritance, super, Polymorphism, Method Overloading, Constructor Overloading, Method Overriding, Dynamic Method Dispatching. String Manipulations. Wrapper classes, Auto boxing and unboxing. Abstract classes, Interfaces, Multiple Inheritance Using Interfaces,

Java API Packages, User-Defined Packages, Accessing Packages, Error and Exception Handling, Types of exceptions Hierarchy of Exception classes, try, catch, finally, throw, throws, Commonly used Exceptions and their details ,User defined exception classes.

UNIT:3

(14 Hours)

Multithreading, Thread in Java, Thread execution prevention methods. (yield(), join(), sleep()), Concept of Synchronization, Inter Thread Communication, Basics of Deadlock, Demon Thread, Improvement in Multithreading, Inner Classes, Introduction, Member inner class, Static inner class, Local inner class, Anonymous inner class.

IO Streams (java.io package), Byte Stream and Character Stream, Files and Random Access Files, Serialization, Collection Frame Work (java.util), Util Package interfaces, List, Set, Map.

UNIT:4

(14 Hours)

Applet Introduction, Life Cycle of an Applet, GUI with an Applet, Abstract Window Toolkit (AWT), Introduction to GUI, Description of Components and Containers, Component/Container hierarchy, Understanding different Components/Container classes and their constructors, Event Handling, Different mechanisms of Event Handling, Listener Interfaces, Adapter classes.

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books

1 Programming in Java. Second Edition. Oxford Higher Education. (Sachin Malhotra/ Saurav Choudhary)

2 Core Java For Beginners. (Rashmi Kanta Das), Vikas Publication

Ref. Books 1.JAVA Complete Reference (9th Edition) Herbalt Schelidt

MAPPING OF COURSE OUTCOMES (COS) WITH PROGRAM OUTCOMES (POS) OOPS Through JAVA												
Course outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1		1							
CO2	2	1	2	2	1							
CO3	2	2	2	2	1							
CO4	3	3	2	3	3	1	1					

Engineering Economics & Costing					
Subject Code	L	т	Ρ	С	QP
BMGHS3061	3	0	0	3	-
Pre -Requisite:					

Course Educational Objective

CEO1: to understand the significance of the economic aspects of engineering and to become proficient in the evaluation of engineering proposals in terms of worth and cost

CEO2: to help students to grasp various economics concepts and theories towards making economic decision.

Course Outcome

- **CO1** Understanding the fundamentals of economic theory in general- concept of demand & supply, theories of production-Laws of returns
- **CO2** Overview of cost and revenueconcepts: Understood the nature and behavior of cost, cost sheet, Break-even analysis- linear approach and understanding of depreciation with its measurement.
- **CO3** Acquainted with evaluation of engineering proposals(Private and public) by learning the concept of Time-value of Money, Determination of economic life of an asset, Replacement of existing asset with a new asset etc.
- **CO4** Familiar with Indianfinancial system and banking structure, idea about concept of national income –its measurement and inflation.
- **CO5** Ultimately learners of the subject get the benefits of understanding the diverse situation happening in the economy and able to make rational decision in the field of engineering.

UNIT:1

12hrs

Engineering Economics –

Meaning, Nature, Scope, Basic problems of an economy, Micro economics and Macro Economics.

Demand and Supply Analysis -

Meaning of demand, Demand function, Law of Demand and its exceptions, Determinants of demand, Elasticity of demand & its measurement (Simple numerical problems to be solved)

Meaning of supply, Law of supply and its exception, Determinants of supply, Elasticity of

supply, Determination of market equilibrium (Simple numerical problems to be solved).

Theory of Production -Production function, Laws of returns: Law of variable proportion, Law of returns to scale.

UNIT:2

Cost and revenue concepts, Elements of costs, Preparation of cost sheet, Segregation of costs into Fixed and variable costs. Basic understanding of different market structures, Price and output Determination under perfect competition (Simple numerical problems to be solved),

Break Even Analysis -

Linear approach (Simple numerical problems to be solved). Depreciation-Depreciation of capital assert, Causes of depreciation, Methods of calculating depreciation (Straight line method, Declining balance method)

UNIT:3

Time value of money -

Interest Analysis - Simple and compound, nominal and effective rate of interest, Cash flow diagrams, Principles of economic equivalence.

Evaluation of engineering projects-

Present worth method, Future worth method, Annual worth method, Internal rate of return method, Cost benefit analysis for public projects. Sensitivity Analysis, Replacement Analysis- Determination of economic life of an asset, Replacement of existing asset with a new asset.

UNIT:4

Overview of Indian financial system. Commercial bank, Functions of commercial bank, Credit creation, Central bank, Functions of Central Bank. Inflation-

Meaning of inflation, types, causes, measures to control inflation.

National Income - Definition, Concepts of national income, Method of measuring national income

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

10hrs

12hrs

10 hrs

Text Books

1, Vengedasalam, Deviga. Madhavan, Karunagaran, Principles of Economics, Oxford University Press.

2. R. Paneer Seelvan, "Engineering Economics", PHI

3. Ahuja,H.L., "Principles of Micro Economics", S.Chand & Company Ltd

4. Riggs,J.L., Bedworth and Randhwa, "Engineering Economics", McGraw Hill Education India

5.Paul, R.R., Money, Banking and International Trade, Kalyni Publishers.

Ref. Books

1.Park, Chan.S, "Fundamental of Engineering Economics", Pearson.

2. Engineering Economy by William G.Sullivan, Elin M.Wicks, C. Patric Koelling, Pearson

- 3. Thuesen, G.J., Fabrycky, Engineering Economy, PHI.
- 4. Jhingan, M.L., "Macro Economic Theory", Vrinda Publications Ltd

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
C1	3	2	1	1		1	2	1		2	2	3
C2	2	2	1	3	2	1		1		2	2	2
C3	3	2	1	1	2	1	2	1	3	2	1	3
C4	3	3	2	3	1	2	1	1	3	3	1	2
C5	1	2	3	2	2	3	1	1	3	2	1	1
C6	1	2	2	1	1	2	2	1	2	3	2	2
Ave rage	2.16	2.16	1.66	1.83	1.6	1.66	1.6	1	2.75	2.33	1.5	2.16

ANALOG	ELECTRONIC LABORATORY					
Subject C	code	L	Т	Ρ	С	QP
BECPC3	110	0	0	2	1	
Pre -Req	uisite: A student should have basic idea on electronic comp	oner	nts			
Course C	Dutcome					
At the end	d of this course students will be able to demonstrate the ab	ility t	0			
CO1	Define the VI characteristics of biasing circuits using proje	ect bo	bards			
CO2	Identify different analog circuits and their behaviors.					
CO3	Compare the practical results with the assumed data valu	es.				
CO4	Design and test of different amplifier and oscillator circuits	6				
List of Ex	cperiments					
(At least ?	10 out of 12 experiments should be done)					
BJT Bias	Circuit - design, assemble and test.					
JEET/MC	SFET Bias Circuit - design, assemble and test.					
Design, a	ssemble and test of BJT Common-Emitter Circuit: DC and	AC p	perform	ance.		
Study of I	Darlington Connection and Current Mirror Circuits.					
Design, performa	assemble and test of JFET/MOSFET Common-Sounce.	rce	Circuit	: DC	and	AC
Frequency frequency	y Response of a Common-Emitter Amplifier: low frequen response.	cy, ł	nigh fre	quenc	cy and	l mid
Differentia	al Amplifiers Circuit: DC bias and AC operation without and	with	currer	it sour	ce.	
Op-Amp	Frequency Response and Compensation.					
Applicatio	on of Op-Amp as differentiator, integrator, square wave gen	erato	or.			
Square w	ave testing of an amplifier.					
R-C Phas	e Shift oscillator/Wien-Bridge Oscillator using OP-Amp/Cry	/stal	Oscilla	tor.		
Class A a	nd Class B Power Amplifier.					

СО	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
C1	3	2	2	2	1	-	-	-	-	2	-	-	-	-	-
C2	3	2	2	1	-	-	-	-	-	-	-	1	-	-	-
C3	3	3	3	2	-	-	-	-	-	-	-	-	-	-	-
C4	3	3	2	2	1	-	-	-	-	2	-	-	-	-	-
Avera ge	3	2.5	2.2 5	1.7 5	1	0	0	0	0	2	0	1	-	-	-

ELECTI	RICAL & ELECTRONICS MEASUREMENT LABORATOR	RY								
Subject Code L T P C C										
PEI3I10	2	3	0	2	4					
Pre -Re	quisite:									
Course	Educational Objective									
CEO1:T	o impart students the skill of practicallyhandling different t	ypes	of me	eter.						
CEO2:T	o prepare students for monitoring, analyzing and calibrati	ng an	y phy	sical i	nstrur	nent.				
CEO3:T electrica	o provide students a knowledge of practicing mode I and electronics projects.	rn to	ols fo	or im	oleme	enting				
Course	Outcome									
At the e	nd of the course, students will be able to:									
CO1	State the construction and working of different mechanic	cal in	strum	ents.						
CO2	Recognize the different types of interferences, their reduction.	· cau	ses a	and m	netho	ds of				
CO3	Employ various types of ac and dc bridges for measure	ment								
CO4	Examine watt meters and energy meters to test their ac	curac	су.							
CO5	Collect different components and design of various ac &	k dc b	ridge	s.						
CO6	Justify the validity of all kind of laboratory instruments in	the f	ield o	f mea	suren	nent.				
LIST O	EXPERIMENTS:									
Measure	ement of Low Resistance by Kelvin's Double Bridge Metho	od.								
Measure	ement of Self Inductance by Anderson Bridge.									
Measure	ement of capacitance using Schering Bridge.									
Study of	Galvanometer and Determination of Sensitivity and Galva	anom	eter (Consta	ants.					
Calibrat	on of Voltmeters and Ammeters using Potentiometers.									
Testing	of Energy meters (Single phase type).									
Measure	ement of Iron Loss from B-H Curve by using CRO.									
Measure	ement of R, L, and C using Q-meter.									

Measurement of Power in a single phase circuit by using CTs and PTs.

Measurement of Power and Power Factor in a three phase AC circuit by two-wattmeter method.

Study of Spectrum Analyzers.

со	PO1	PO2	PO3	PO4	РО 5	PO6	РО 7	PO 8	РО 9	PO1 0	PO11	PO1 2	PSO 1	PSO 2	PSO 3
C1	2	1	1	-	1	2	2	2	2	1	1	3	-	2	1
C2	3	2	2	2	1	2	3	2	2	2	2	3	-	1	-
C3	3	2	1	1	2	3	-	1	1	2	1	2	2	3	1
C4	3	3	-	3	2	1	1	-	3	-	1	-	1	3	1
C5	3	1	3	2	3	3	3	2	3	2	2	2	2	3	1
C6	2	1	2	-	2	1	2	1	2	3	2	2	1	1	-
Ave rage	2.66	1.66	1.8	2	1.8 3	2	2.2	1.6	2.1 6	2	1.5	2.4	1.5	2.16	1

JAVA Programming Laboratory					
Subject Code	L	Т	Ρ	С	QP
PEI3I102	3	0	2	4	
Pre -Requisite:					
Course Educational Objective					

CEO1: To introduce the pure object-oriented concepts through Java programming.

CEO2: To enable a detailed insight into the Java programming concepts such as creating classes, Methods, Interfaces, Packages, Multithreaded Environment, String handling, Enumerations, Creating small Swing application.

Course Outcome

At the end of the course, students will be able to:

- **CO1** Apply the object-oriented concepts through Java language.
- **CO2** Demonstrate the concepts of polymorphism and inheritance.
- **CO3** Write Java programs to implement error handling techniques using exception handling

Employ various types of ac and dc bridges for measurement

CO4 Develop solution for a real problem using Java programming.

JAVA programs on:

- 1. Introduction, Compiling & executing a java program.
- 2. Data types & variables, decision control structures: if, nested if etc.
- 3. Loop control structures: do, while, for etc.
- 4. Classes and objects.
- 5. Data abstraction & data hiding, inheritance, polymorphism.
- 6. Threads, exception handlings and applet programs
- 7. Interfaces and inner classes, wrapper classes, generics

DIGITAL ELECTRONICS

BECPC 4010

3 1 0 4

Ρ

С

QP

Т

L

Pre -Requisite: A student should have basic idea on logic gates

Course Educational Objective

CEO1: To acquire the basic knowledge of digital logic levels and implements it in digital electronics.

CEO2: Prepare the students to perform the analysis and design of various digital electronic circuits.

Course Outcome

At the end of this course students will be able to demonstrate the ability to

- **CO1** Understand working of logic families and logic gates.
- **CO2** Recognize and study various number systems and their application in digital design.
- **CO3** Design and implement combinational logic circuits.
- **CO4** Design and analyze sequential logic circuits.
- **CO5** Employ PLDs to execute the given logical problem.
- **CO6** Establish the process of analog to digital conversion and digital to analog conversion.

MAPPING OF COURSE OUTCOMES (COS) WITH PROGRAM OUTCOMES (POS) JAVA PROGRAMMING LAB													
Course outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	-		-	-	-	-	-	-	-	
CO2	3	2	-	-	2	-	-	-	-	-	-	-	
CO3	3	2	-	-	2	-	-	-	-	-	-	-	
CO4	3	3	3	2		1	-	-	-	-	-	-	
UNIT: I											8	Hours	

Number Systems and Codes: Binary, Octal, Hexadecimal and Decimal Number System and their Conversion; Representation of Signed Binary and Floating Point Number; Binary Arithmetic using 1's and 2's Complements, Binary Codes - BCD Code, Gray Code, ASCII Character Code.

(5 Hours)

Boolean Algebra and Logic Gates: Axioms and Laws of Boolean Algebra; Reducing Boolean Expressions; Logic levels and Pulse Waveforms; Logic Gates; Boolean Expressions and Logic Diagrams. (3 Hours)

UNIT: II

Gate-level Minimization: Canonical and Standard Forms; K-maps - Two, Three and Four Variable K-maps, Don't-Care Conditions; NAND and NOR Implementation; Other Two-Level Implementations, Exclusive-OR Function. (4 Hours)

Combinational Logic: Combinational Circuits; Analysis Procedure; Design Procedure; Adders; Subtractors; Parallel Binary Adders; Binary Adder-Subtractor; Binary Multiplier; Magnitude Comparator; Decoders; Encoders, Multiplexers; De-multiplexers. (5 Hours)

UNIT: III

Synchronous Sequential Logic: Sequential Circuits; Latches, Flip-Flops; Master-Slave Flip-Flop; Conversion of Flip-Flops; Analysis of Clocked Sequential Circuits; Mealy and Moore Models of Finite State Machines. (6 Hours)

Registers and Counters: Shift Registers; Data Transmission in Shift Registers; SISO, SIPO, PISO and PIPO Shift Registers; Counters; Asynchronous Counters; Design of Asynchronous Counters; Synchronous Counters; Design of Synchronous Counters; Ring Counter.

(8 Hours)

UNIT: IV

Memory and Programmable Logic: Introduction; Random-Access Memory; Memory Decoding: Error Detection and Correction: Read-Only Memory: Programmable Logic Array; Programmable Array Logic; Sequential Programmable Devices. (5 Hours)

Analog-to-Digital and Digital-to-Analog Converters: Digital-to-Analog Converters - R-2R Ladder D/A Converter, Weighted Resistor D/A Converter; Analog-to-Digital Converters Counter-type A/D Converter, Parallel Comparator A/D Converter, Dual-Slope A/D Converter, Successive-Approximation A/D Converter, A/D Converter using Voltage-to-Frequency. (5 Hours)

IC Logic Families: Special Characteristics; RTL, DTL, TTL, ECL, IIL, MOS and CMOS Logic Circuits. (4 Hours)

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books:

Digital Design, 3rd Edition, M. Morris Mano, Pearson Education.

Digital Fundamentals, 5th Edition, T. L. Floyd and R. P. Jain, Pearson Education, New Delhi.

Fundamentals of Digital Circuits, 8th Edition, A. Anand Kumar, PHI.

14 Hours

9 Hours

14 Hours

Reference Books:

Digital Systems – Principles and Applications, 10th Edition, Ronald J. Tocci, Neal S. Widemer and Gregory L. Moss, Pearson Education.

A First Course in Digital System Design: An Integrated Approach, India Edition, John P. Uyemura, PWS Publishing Company, a division of Thomson Learning Inc.

Digital Systems – Principles and Applications, 10th Edition, Ronald J. Tocci, Neal S. Widemer and Gregory L. Moss, Pearson Education.

Digital Design, Robert K. Dueck, CENGAGE Learning.

Digital Principles and Applications, 6th Edition, Donald P. Leach, Albert Paul Malvino and Goutam Saha, Tata McGraw Hill Publishing Company Ltd., New Delhi.

со	РО 1	РО 2	РО 3	PO 4	PO 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
C1	3	-	-	-	-	-	-	-	1	-	-	2	-	-	-
C2	3	2	1	-	-	-	-	-	1	-	-	1	-	-	-
C3	3	3	3	2	2	1	-	-	2	1	1	1	-	-	-
C4	3	3	3	3	3	2	1	-	2	2	2	2	1	1	-
C5	3	3	3	3	3	2	2	-	2	2	2	2	1	1	1
C6	3	-	2	2	2	1	1	-	2	1	1	1	1	1	1
Avera ge	3	2.7 5	2.4	2.5	2.5	1.5	1.3 3	0	1.6 7	1.5	1.5	1.5	1	1	1

MICROPROCESSORS AND MICROCONTROLLERS					
Subject Code	L	т	Ρ	С	QP
BECPC 4020	3	0	0	3	
			•.		

Pre -Requisite: The students should have good background on digital circuits.

Course Educational Objective

CEO1: To Develop assembly language programs and basic concepts of the microprocessor and microcontroller

CEO2: To provide solid foundation on interfacing the external devices to the microprocessor & microcontroller according to the user requirements in order to create novel products and solutions for the real time problems

CEO3: To Familiar and Design of any type of embedded systems related to industrial and real time applications by knowing the concepts of Microprocessor and Microcontrollers.

CEO4: To assist the students with an academic environment aware of excellence guidelines and lifelong learning needed for a successful professional carrier in the field embedded systems.

Course Outcome

CO1 Understand the architecture of 8085,8086 &8051

CO2 Impart the knowledge about the instruction set

CO3 To use the basic idea about the data transfer schemes and its applications

CO4 Develop skill in simple program writing for 8085, 8086 and 8051 applications

CO5 To design circuits for various applications using microcontrollers.

CO6 To introduce the need & use of Interrupt structure 8085, 8086 & 8051.

UNIT: 1

Introduction to 8 bit-microprocessor.

10 Hours

Introduction to 8085 microprocessor, Architecture, Signal Descriptions, Buses-Address bus, data bus and control Bus , Instruction format , Instruction sets , addressing Modes, Assembly Language Programming, Timingdiagram, stack and sub routine, Data Transfer Schemes, Memory Interfacing and 8085 interrupts.

UNIT:2

Advanced Microprocessor

Introduction to 8086 microprocessor, 8086 Architecture, Register Organization, signal descriptions, Memory Segmentation. Physical memory organization. Addressing Modes, instruction Set .Minimum and Maximum mode operation, Bus Cycle of minimum mode and maximum mode. Interrupts of 8086, Memory interfacing & Assembly Language Program.

UNIT:3

Peripheral Devices

Programmable Peripheral Interface (8255), Programmable Interval Timer (8254)Programmable Interrupt Controller (8259A) - Programmable DMA Controller(8257),Programmable Communication Interface (8251A) – Programmable Keyboard and Display Controller (8279).

UNIT:4

8051 Microcontroller

Overview of 8051 microcontroller. Architecture. I/O Ports. Memory organization, Addressing modes, data transfer instructions, Logical instructions, Arithmetic instructions, Branching (Jump & Call) instructions, Bit addressable instructions and special instructions, Interrupts and interrupt handler sub routines (Interrupt Service Routines). Assembly language program.

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books

1 Microprocessor Architecture, Programming and application with 8085, R.S. Gaonkar, PRI Penram International publishing PVT. Ltd., 5thEdition

2. Advanced Microprocessors and Peripherals - A. K. Ray and K.M. Bhurchandani, TMH, 2nd edition 2006.

3. The 8051 Microcontroller and Embedded Systems, Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D.M C Kinlay, Pearson Education, Second Edition, 2008.

Ref. Books

Microprocessors and Microcontrollers Architecture, programming and system design using 8085, 8086, 8051 and 8096, Krishna Kant, PHI Publication, 2007.

Microprocessors and Interfacing, Programming and Hardware, Douglas V Hall, TMH Publication, 2006.

Microprocessors and Interfacing, N. Senthil Kumar, M. Saravanan, S. Jeevananthan and S.K. Shah, Oxford University Press.

12 Hours

12 Hours

10 Hours

со	РО 1	PO 2	РО 3	РО 4	РО 5	РО 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
C1	3	1	3		2	-	1	-	-	-	1	1	1	1	1
C2	2	3	3	2	3	-	-	1	1	-	-	-	1	2	-
C3	1	2	1	3	1	-	1	-	-	-	-	-	2	-	-
C4	1	3	2	1	2	-	-	-	-	-	-	-	-	2	1
C5	2	2	3	2	-	-	-	1	-	-	-	1	-	1	1
C6	1	2	1	3	2	1	-	-	-	1	-	2	-	1	1
Avera	1.6	2.1	2.1	22	20	1	1	1	1	1	1	1 33	1.33	1.4	1
ge	6	6	6	۷.۷	2.0	I						1.55			

CO – PO & PSO mapping Matrix of Course Microprocessors And Microcontrollers

CONTROL SYSTEMS

Subject Code

PEI4I102

Pre -Requisite:

Course Educational Objective

CEO1:To introduce students to the analysis of circuit networks and control systems.

CEO2: CEO2 CEO2 : To provide the knowledge about stability and compensation considerations, using root locus, the Nichols chart, and Bode plots.

CEO3: To impart the idea of various principles which are usable in building and testing control systems.

Course Outcome

At the end of the course, students will be able to:

- **CO1** State the basic features, configuration and model of a control system.
- **CO2** Explain the behavior of different physical systems.
- **CO3** Apply compensating controllers to stabilize fluctuating factors for various industrial applications.
- **CO4** Differentiate the time domain & frequency domain behavior of a physical system.
- **CO5** Propose a specific PID or robust controller for a particular designing task.
- **CO6** Prepare, evaluate and appraise a control project that performs an engineering application.

UNIT:1

(11 Hrs)

Т

0

L

3

Ρ

2

С

4

QP

INTRODUCTION TO CONTROL SYSTEMS: Basic Concepts of Control Systems, Open loop and closed loop systems, Servo Mechanism/Tracking System, Regulators.

MATHEMATICAL MODELS OF PHYSICAL SYSTEMS: Differential Equations of Physical Systems, Mechanical Translational Systems, Electrical Systems, Analogy between Mechanical and electrical quintiles, Mechanical Accelerometers, Gear Trains.

TRANSFER FUNCTION: Block Diagram Algebra, Signal flow Graphs, Mason's Gain Formula.

FEEDBACK CHARACTERISTICS OF CONTROL SYSTEM: Effect of negative feedback on sensitivity, bandwidth, Disturbance, linearizing effect of feedback, Regenerative feedback.

CONTROL COMPONENTS: AC servomotor, DC servomotor, AC tachometer, Synchro and Stepper motor.

TIME RESPONSE ANALYSIS: Standard Test Signals, Time response of first order systems to unit step and unit ramp inputs, Time Response of Second order systems to unit step and unit ramp input, Time Response specifications, Steady State Errors and Static Error Constants of different types of systems, Generalized error series and generalized error coefficients.

STABILITY AND ALGEBRAIC CRITERIA: concept of stability, Necessary conditions of stability, Hurwitz stability criterion, Routh stability criterion, Application of the Routh stability criterion to linear feedback system, Relative stability by shifting the origin in s-plane.

ROOT LOCUS TECHNIQUE: Root locus concepts, Rules of Construction of Root locus, Determination of Roots from Root locus for a specified open loop gain, Systems with transportation lag, Effect of adding open loop poles and zeros on Root locus.

UNIT: 3

FREQUENCY RESPONSE ANALYSIS: Frequency domain specifications, , Polar plots, Bode plot. Determination of Gain Margin and Phase Margin from Bode plot.

STABILITY IN FREQUENCY DOMAIN: Principle of argument, Nyquist stability criterion, Application of Nyquist stability criterion for linear feedback system.

UNIT:4

CLOSED LOOP FREQUENCY RESPONSE: Constant M-circles, Constant N-Circles, Nichol's chart. Controllers: Concept of Proportional, Derivative and Integral Control actions, P, PD, PI, PID controllers. Zeigler-Nichols method of tuning PID controllers.

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books:

1. Modern Control Engineering by K. Ogata, 5th edition PHI.

Control Systems Engg. by I.J. Nagrath and M.Gopal, 5th Edition, New Age International Publishers (2010).

Modern Control Systems by Richard C.Dorf and Robert H. Bishop, 11th Ed (2009), Pearson

Reference Books:

Design of Feedback Control Systems by R.T. Stefani, B. Shahian, C.J. Savator, G.H. Hostetter, Fourth Edition (2009), Oxford University Press.

Control Systems (Principles and Design) by M.Gopal 3rd edition (2008), TMH.

Analysis of Linear Control Systems by R.L. Narasimham, I.K. International Publications

Control Systems Engineering by S.P. Eugene Xavier and J. Josheph Cyril Babu, 1st Edition (2004), S. Chand Co. Ltd.

Problems and solutions in Control System Engineering by S.N. Sivanandam and S.N.

(15 Hours)

(6 Hours)

(8 Hours)

Deepa, Jaico Publishing House

со	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO8	РО 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
C1	2	2	1	-	2	3	3	1	1	1	-	2	3	3	2
C2	2	3	3	2	1	-	1	-	1	3	1	1	2	1	-
C3	3	3	1	2	2	2	2	1	3	2	1	1	1	2	3
C4	3	3	2	3	2	1	-	-	3	1	1	2	3	1	2
C5	3	3	3	3	3	2	1	1	3	2	1	-	2	2	3
C6	3	2	-	1	2	3	1	1	2	3	3	2	-	1	2
Ave rag e	2.6 7	2.6 7	2	2.2	2	2.2	1.6	1	2.3 3	2	1.4	1.6	2.2	1.66	2.4

SEMICONDUCTOR DEVICES					
Subject Code	L	т	Ρ	С	QP
BECPC 4040	3	1	0	4	

Pre -Requisite: The students should have good background knowledge on semiconductor and its properties.

Course Educational Objective

CEO1:To gain basic knowledge on quantum theory of solids and flow mechanism in semiconductor.

CEO2: Provide students the insight for understanding new semiconductor devices and technologies.

CEO3: To provide the students a solid platform on semiconductor devices which can help them to work upon on real field applications like High frequency communications, optical communications etc.

COURSE OUTCOME

- CO1 Define the basics of quantum theory of solids and flow mechanism in semiconductor
- **CO2** Describe the details of semiconductor devices and their working.
- **CO3** Demonstrate the application of semiconductor devices to various field.
- **CO4** To compare working threshold of different semiconductor devices.
- **CO5** Formulate and construct devices with higher performances based upon the requirement.
- **CO6** To justify the preference of devices based on their advantages and disadvantages for various on field applications.

UNIT: 1

12 HOURS

Introduction to the quantum theory of solids: Formation of energy bands, The k-space diagram(two and three dimensional representation), conductors, semiconductors and insulators.

Electrons and Holes in semiconductors: Silicon crystal structure, Donors and acceptors in theband model, electron effective mass, Density of states, Thermal equilibrium, Fermi-Dirac distribution function for electrons and holes, Fermi energy. Equilibrium distribution of electrons & holes: derivation of *n* and *p* from D(E) and f(E), Fermi level and carrier concentrations, The *np* product and the intrinsic carrier concentration. General theory of *n* and *p*, Carrier concentrations at extremely high and low temperatures: complete ionization, partial ionization and freeze-out. Energy-band diagram and Fermi-level, Variation of E_F with doping concentration and temperature.

UNIT:2

12 HOURS

Motion and Recombination of Electrons and Holes: Carrier drift: Electron and hole motilities,Mechanism of carrier scattering, Drift current and conductivity. Carrier diffusion: diffusioncurrent, total current density, relation between the energy diagram and potential, electric field. Einstein relationship between diffusion coefficient and mobility. Electron-hole recombination, Thermal generation.

PN Junction: Building blocks of the pn junction theory: Energy band diagram and depletion layer of a pn junction, Built-in potential; Depletion layer model: Field and potential in the depletion layer, depletion-layer width; Reverse-biased PN junction; Capacitance-voltage characteristics; Junction breakdown: peak electric field. Tunneling breakdown and avalanche breakdown; Carrier injection under forward bias-Quasi-equilibrium boundary condition; current continuity equation; Excess carriers in forward-biased pn junction; PN diode I-V characteristic, Charge storage.

UNIT:3

10 HOURS

The Bipolar Transistor: Introduction, Modes of operation, Minority Carrier distribution, Collector current, Base current, current gain, Base width Modulation by collector current, Breakdown mechanism, Equivalent Circuit Models - Ebers -Moll Model.

Metal-Semiconductor Junction: Schottky Diodes: Built-in potential, Energy-band diagram, I-Vcharacteristics, Comparison of the Schottky barrier diode and the pn-junction diode. Ohmic contacts: tunneling barrier, specific contact resistance.

UNIT:4

8 HOURS

MOS Capacitor: The MOS structure, Energy band diagrams, Flat-band condition and flatbandvoltage, Surface accumulation, surface depletion, Threshold condition and threshold voltage, MOS C-V characteristics, Q_{inv} in MOSFET.

MOS Transistor: Introduction to the MOSFET, Complementary MOS (CMOS) technology, V-ICharacteristics, Surface mobilities and high-mobility FETs, JFET, MOSFET V_t , Body effect and steep retrograde doping, pinch-off voltage,

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books

Semiconductor Physics and Devices, 3rd Edition, Donald A. Neamen, Tata McGraw Hill Publishing Company Limited, New Delhi.

Modern Semiconductor Devices for Integrated Circuits, Chenming Calvin Hu, Pearson Education/Prentice Hall, 2009.

Ref. Books

Solid State Electronics Devices, 6th Edition, Ben. G. Stretman and Sanjay Banarjee, Pearson Education, New Delhi.

Physics of Semiconductor Devices, 3rd Edition, S.M. Sze and Kwok K. Ng, Wiley India Pvt. Limited, New Delhi.

со	РО 1	PO 2	PO 3	РО 4	PO 5	РО 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
C1	3	3	1	1	-	-	-	1	2	-	-	1	-	-	1
C2	3	3	3	2	1	1	-	-	1	1	-	2	2	2	-
C3	3	3	3	3	2	1	1	-	-	2	1	1	-	-	2
C4	3	2	2	2	2	1	-	1	-	-	-	2	1	-	-
C5	3	3	3	3	3	-	-	-	-	-	2	-	2	2	-
C6	2	2	1	1	1	-	3	-	1	-	1	-	-	-	2
Avera	2.8	2.6	2.1	20	15	1	2	1	1.3	15	1 33	15	1 67	2	1 67
ge	3	6	6	2.0	1.0	I	۷	1	3	1.5	1.55	1.5	1.07	۷	1.07

Title of the subjectSubject CodeLTPCQPBCSPC4030Database Management System3003A

Pre -Requisite:

Course Educational Objective

CEO1:To understand the different issues involved in the design and implementation of a database system

CEO2: To study the physical and logical database designs, database modeling, relational, hierarchical, and network models.

CEO3: To understand and use data manipulation language to query, update, and manage a database

CEO4: To develop an understanding of essential DBMS concepts such as: database security, integrity, concurrency, distributed database, and intelligent database, Client/Server(Database Server), Data Warehousing.

CEO5: To design and build a simple database system and demonstrate competence with the fundamental tasks involved with modeling, designing, and implementing a DBMS.

Course Outcome: At the end of the course, the student will be capable of

- **CO1** Interpreting the Database Management concepts, different Data models and architectures with ER to Relational mapping.
- **CO2** Applying and executing the SQL, relational algebra and calculus commands to create and manipulate Database.
- **CO3** Differentiate normal forms for normalization process to construct the consistent Database.
- **CO4** Design the Database by inspecting concurrency and recovery strategies to make complete DB without confliction and consistent DB in concurrent environment.

UNIT:1

(15 Hours)

Introduction to database Systems, advantages of database system over traditional file system, Basic concepts & Definitions, Database users, Database Language, Database System Architecture, Schemas, Sub Schemas, & Instances, database constraints, 3-level database architecture, Data Abstraction, Data Independence, Mappings, Structure, Components & functions of DBMS, Data models.

UNIT:2

(13 Hours)

Entity relationship model, Components of ER model, Mapping E-R model to Relational schema, Relational Algebra, Tuple & Domain Relational Calculus, Relational Query

Languages: SQL and QBE. Database Design :-Database development life cycle (DDLC), Automated design tools, Functional dependency and Decomposition, Join strategies, Dependency Preservation & lossless Design, Normalization, Normal forms:1NF, 2NF,3NF, and BCNF, Multi-valued Dependencies, 4NF & 5NF. Query processing and optimization: Evaluation of Relational Algebra Expressions, Query optimization, Query cost estimation.

UNIT:3

(10 Hours)

Network and Object Oriented Data models, Storage Strategies: Detailed Storage Architecture, Storing Data, Magnetic Disk, RAID, Other Disks, Magnetic Tape, Storage Access, File & Record Organization, File Organizations & Indexes, Order Indices, B+ Tree Index Files, Hashing Data Dictionary.

UNIT:4

(12 Hours)

Transaction processing and concurrency control: Transaction concepts, properties of transaction, concurrency control, locking and Timestamp methods for concurrency control schemes. Database Recovery System, Types of Data Base failure & Types of Database Recovery, Recovery techniques. fundamental concepts on Object-Oriented Database, Object relational database, distributed database, Parallel Database, introduction to Data warehousing & Data Mining.

Teaching Methods: Chalk& Board/ PPT/Video Lectures/Lecture by Industry Expert/MOOCS

Text Books:1 Sudarshan, Korth: **Database System Concepts**, 6th edition, McGraw-Hill Education

References Books:

1. Elmasari &Navathe: Fundamentals of Database System, Pearson Education.

2. Ramakrishnan: Database Management Systems, McGraw-Hill Education.

3. Andrew S. Tanenbaum: Modern Operating Systems, 3rd Edition, Pearson Education.

4. Terry Dawson, Olaf Kirch: Linux Network Administrator's Guide, 3rd Edition O'Reilly

Media

DIGITAL	ELECTRONICS LABORATORY					
Subject C	ode	L	Т	Ρ	С	QP
BECPC41	10	0	0	2	1	
Pre -Requ	uisite:					
Course O	outcome					
At the end CO1 CO2 CO3 CO4 CO5	d of this course students will be able to demonstrate the all List the truth tables of all the Logic Gates and their behave Explain all the combinational logic circuits and verificatio Demonstrate different types of memory elements. Differentiate different types of flipflops. Simulate the logic circuits using VHDL and Verilog HDL.	bility to viours/ n of th) Boole eir tru	an ex th tab	press les.	ion.

MAPPING OF COURSE OUTCOMES (COS) WITH PROGRAM OUTCOMES (POS) DATABASE MANAGEMENT SYSTEM												
Course outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12
CO1	3	3	3	1		1						
CO2	3	3	3	1	3							
CO3	3	2	3		1							
CO4	3	3		3		2						

List of Experiments

(At least 10 experiments should be done, Experiment No. 1 and 2 are compulsory and out of the balance 8 experiments at least 3 experiments has to be implemented through both Verilog/VHDL and hardware implementation as per choice of the student totaling to 6 and the rest 2 can be either through Verilog/VHDL or hardware implementation.)

Digital Logic Gates: Investigate logic behavior of AND, OR, NAND, NOR, EX-OR, EXNOR, Invert and Buffer Gates, use of Universal NAND/NOR Gate.

Gate-Level Minimization: Two level and multi level implementation of Boolean functions.

Combinational Circuits: Design, assemble and test: adders and subtractors, code converters, gray code to binary and 7 segment displays.

Design, implement and test a given design example with (i) NAND Gates only (ii) NOR Gates only and (iii) using minimum number of Gates.

Design with Multiplexers and De-multiplexers.

Flip-Flop: Assemble, test and investigate operation of SR, D & JK flip-flops.

Shift Registers: Design and investigate the operation of all types of shift registers with parallel load.

Counters: Design, assemble and test various ripple and synchronous counters -decimal counter, Binary counter with parallel load.

Memory Unit: Investigate the behavior of RAM unit and its storage capacity – 16×4 RAM: testing, simulating and memory expansion.

Clock-Pulse Generator: Design, implement and test.

Parallel Adder and Accumulator: Design, implement and test.

Binary Multiplier: Design and implement a circuit that multiplies 4-bit unsigned numbers to produce an 8-bit product.

Verilog/VHDL simulation and implementation of Experiments listed at SI. No. 3 to 12.

CO	РО 1	PO 2	РО 3	PO 4	РО 5	РО 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
C1	3	2	1	-	-	-	-	-	2	-	-	1	-	-	-
C2	3	3	3	2	1	1	1	-	1	1	-	1	-	-	-
C3	3	2	2	3	1	2	-	-	2	1	1	1	1	1	1
C4	3	3	3	3	2	1	1	-	1	1	1	1	-	-	-
C5	3	3	3	3	2	2	1	-	2	1	-	2	2	1	1
Avera ge	3	2.6 0	2.4 0	2.7 5	1.5 0	1.5 0	1	-	1.6 0	1	1	1.20	1.50	1	1

Subject Code	MICROPROCESSOR&	L	Т	Ρ	С	QP
-	MICROCONTROLLER LAB					

BECPC 4120

0 0 2 1

Pre-Requisites (If any) – The students should have good background on digital circuits.

Course Educational Objective

CEO-1: Developing of assembly level programs and providing the basics of the processors

CEO-2:To assist the students with an academic environment aware of excellence guidelines and lifelong learning needed for a successful professional carrier

CEO-3:To provide solid foundation on interfacing the external devices to the processor according to the user requirements to create novel products and solutions for the real time problems

Course Outcomes

- **CO1** Understand and apply the fundamentals of assembly level programming of microprocessors and microcontroller.
- **CO2** An in depth knowledge of applying the concept of real time application.
- **CO3** Troubleshoot interactions between software and hardware;
- **CO4** Analyze abstract problems and apply a combination of hardware and software to address the problem;
- **CO5** Use standard test and measurement equipment to evaluate digital interfaces.
- **CO6** Design circuits for various applications using microprocessor & microcontroller.

Write a program for addition of two 8 –bit and 16 bit numbers.

.write a program for addition of series of numbers.

Subtraction of two 8 bit and 16 bit numbers.

Write a program for finding the larger between two numbers.

Write a program to find the smallest from an array of numbers.

Arrange a series of numbers in ascending order.

Multiplication and division of two 8 bit numbers

. Demonstrate the generation of square wave using PPI

Write a program to interface ADC and DAC with 8085.

Write a program to interface stepper motor with 8085.

Write a program to interface traffic light control with 8085.

Teaching Method(s): Marker & Board/ PPT/ Demonstration.

CO – PO– PSO Matrix of Course

С	C	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
C1	1	3	2	2	2	1	1	-	1	2	2	-	1	1	2	-
C2	2	2	1	3	1	3	2	2	-	-	-	-	-	1	1	1
C	3	1	-	1	3	2	-	1	-	2	1	-	1	-	-	-
C4	4	1	3	2	2	2	2	-	-	2	-	1	-	1	2	2
C	5	2	2	2	2	1	1	-	2	-	2	-	-	1	-	-
Ce	6	2	2	1	3	2	-	-	-	2	-	1	-	2	1	-
A۱ ag	/er je	1.83	2.4	1.83	2.16	1.83	1.5	1.5	1.5	2	1.67	1	1	1.2	1.5	1.5

Title of the	ne subject											
Subject	Code	L	Т	Ρ	С	QP						
PEI3I102	2 CONTROL SYSTEM LABORATORY	3	0	2	4							
Pre -Rec	quisite:											
Course I	Educational Objective											
CEO1: To highlight the electrical modeling of a second order system and analyse the under damped, over-damped and critically damped cases.												
CEO2: T	o study the effects of poles and zeros location in the s-pl	ane o	on the	trans	ient a	nd						
steady s CEO3: and sele	tate behavior. Fo investigate the Servo-Motor speed and position con- cting specific P, I and PIgains for specific responses.	trol p	orincip	les by	/ desi	gning						
Course At the er	Outcome nd of the course, students will be able to:											
CO1	Recognize analog and digital control skills to evaluproblems.	ate	& cor	ntrol e	engine	ering						
CO2	CO2 Demonstrate the analog control experiments using analog computers and digital control experiments using PC & serve trainers											
CO3	O3 Apply Laplace transform, transfer function, modelling RLC circuit and block diagram for simulation & control											
CO4	Analyze various practical sessions in control engine research point.	eerir	ng lea	ading	towar	ds a						
CO5	Design and determine control system parameters & tra both the theoretical and applied analysis.	nsfer	functi	ion by	or comb	bining						
CO6	Justify the knowledge in the field of control engineer digital techniques.	ing u	ising I	both a	analog	g and						
LIST OF	EXPERIMENTS:											
Control												
To stud its transf	y of speed torque characteristics of two phase ac servo er function.	moto	r and	deter	minati	ion of						
To obtai	n the frequency response of a lag and lead compensator.											
To obse	rve the time response of a second order process with P, F	Pl an	d PID									
Control a	and apply PID control to servomotor.											
To study	and validate the controllers for a temperature control sys	stem.										

To study the position control system using Synchro.

Simulation:

To Determine the step response and evaluation of time domain specification for a 2^{nd} order system.

To study of P, PI, PD and PID type controller on the step response of a feed back control system using simulink.

To draw the root locus for a given transfer function and verification of breakaway point and imaginary axis crossover point using MATLAB.

To draw the polar, Nyquist and bode plot for a given transfer function using MATLAB.

To design ac and dc electrical circuits using Simulink.

СО	РО 1	PO2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
C1	2	2	1	1	1	2	2	1	1	-	1	3	1	-	1
C2	3	3	1	-	1	1	-	-	1	1	1	3	2	2	1
C3	3	3	-	1	3	2	3	1	2	1	2	2	3	2	3
C4	2	2	2	3	1	1	1	-	2	2	1	-	3	3	-
C5	3	2	3	2	3	2	3	2	3	2	2	-	2	3	2
C6	2	2	1	-	1	1	2	2	2	3	3	3	-	1	1
Aver age	2.5	2.33	1.6	1.75	1.66	1.5	2.2	1.5	1.83	1.8	1.66	2.75	2.2	2.2	1.6

DATABASE MANAGEMENT SYSTEM LAB.

(Sub. Code: BCSPC4130)

Course Educational Objective:

CEO1: Design and create a ERD (Entity Relationship Diagram) using software tool.

CEO2: Learn how to design and create and use a relational database system.

Course outcomes

CO1: Construct an Entity-Relationship (E-R) model (diagram) from specifications and to transform to relational model.

CO2: Create a relational database with different types of integrity constraints.

CO3: Perform Create, Retrieve, Update, Delete SQL operations on relational database.

CO4: Create and submit a simple database application that demonstrates understanding of all the above, working as a team.

- 1. Use of SQL syntax: insertion, deletion, join, updation using SQL.
- 2. Programs on join statements and SQL queries including where clause.
- 3. Programs on procedures and functions.
- 4. Programs on database triggers.
- 5. Programs on packages.
- 6. Programs on data recovery using check point technique.
- 7. Concurrency control problem using lock operations.
- 8. Programs on ODBC using either VC++.
- 9. Programs on JDBC.
- 10. Programs on embedded SQL using C / C++ as host language.

Additional Assignments

- 1. Use of NoSQL database like MongoDB.
- 2. Programs on connectivity to MongoDB using MEAN.
- 3. Programs on connectivity to Mongo-DB using Python.
- 4. Programs on connectivity to Mongo DB using PHP.

MAPPING OF COURSE OUTCOMES (COS) WITH PROGRAM OUTCOMES (POS) DATABASE MANAGEMENT SYSTEM LAB												
Course outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2		2							
CO2	3	3	3	2	2							
CO3	3	3	3									
CO4	3	3	3	2	2				3	2		